

Научно-производственная фирма

ШКАФ ШК1 800-ХХ-БРП12

ШКАФ АВТОМАТИЧЕСКОГО ВКЛЮЧЕНИЯ РЕЗЕРВА ЭЛЕКТРОПИТАНИЯ

CBT64.820.000-12 (..-35) CBT64.830.000-12 (..-35) TY4371-002-54349271-2005

ПАСПОРТ

г. Гатчина 2007 г.

СОДЕРЖАНИЕ

вве	дение	4
1.	Назначение	4
2.	Технические характеристики	4
3.	Варианты исполнения шкафа	6
4.	Комплектность	7
5.	Устройство шкафа	7
6.	Алгоритм управления электропитанием	8
7.	Указание мер безопасности	8
8.	Рекомендации по монтажу	8
9.	Рекомендации по проведению пуско-наладочных работ	9
10.	Техническое обслуживание	.11
11.	Гарантии изготовителя	.11
12.	Сведения о рекламациях	.12
13.	Сведения об упаковке и транспортировке	.12
14.	Свидетельство о приемке	. 13
15.	Свидетельство о вводе изделия в эксплуатацию	.13
	Приложение 1 Установочные и габаритные размеры	. 14
	Приложение 2 Схема электрическая принципиальная	15

Введение

Настоящий паспорт предназначен для изучения, правильной эксплуатации и полного использования технических возможностей шкафа "ШК1 800-ХХ-БРП12".

Настоящий паспорт содержит техническое описание, инструкцию по эксплуатации, техническому обслуживанию и монтажу, требования безопасности и гарантии изготовителя.

1. Назначение

Шкаф автоматического включения резерва электропитания "ШК1 800-ХХ-БРП12" (в дальнейшем по тексту - шкаф), предназначен для:

- обеспечения электроснабжением переменного тока (в дальнейшем по тексту АС) электроприемников І категории, путём автоматического присоединения резервного источника питания при неисправности рабочего источника питания;
- обеспечения, совместно с аккумуляторной батареей (в дальнейшем по тексту АКБ), бесперебойного питания приборов и устройств напряжением 12В постоянного тока (в дальнейшем по тексту - DC);
- заряда аккумуляторной батареи;
- контроля состояния АКБ и источников питания АС;
- выдачи извещений о состоянии шкафа;
- непрерывной круглосуточной работы.

2. Технические характеристики

Устройства автоматики и коммутации, размещенные в шкафу, обеспечивают защиту от перегрузок и токов коротких замыканий, осуществляют автоматическое включение резерва электропитания и формируют сигналы состояния шкафа.

Характеристики	электропитания	і шкафа:
----------------	----------------	----------

•	Количество источников электропитания (вводных линий)	<u> </u>
•	Номинальное напряжение электропитания, B,~380/220 ^{+10%} / ₋₁₅₀	%
•	Номинальная частота сети, Гц	,
•	Сопротивление изоляции между сетевыми выводами и	
	винтом заземления при нормальных климатических условиях, МОм, не менее):

Характеристики контроля качества электропитания шкафа:

- Нарушение чередования фаз не допускается; Качество электропитания шкафа контролируется раздельно по каждому вводу. Отклонение

качества электропитания от указанных характеристик считается неисправностью источника электропитания.

Характеристики электропитания потребителей АС:

- Максимальный суммарный ток потребителей АС, А см. "Варианты исполнения" Івых АС;

Характеристики электропитания потребителей DC:

- Номинальный ток потребителей DC, A,см. "Варианты исполнения", I_{вых}DC;

Версия 01.0705

¹ При исправном электропитании АС. В случае неисправности обоих источников АС

<i>НПФ "СВИТ" СВТ64.820(830).000-01(03) ПС</i> ПАСПОРТ				
Характеристики встроенного блока резервного питания DC (в дальнейшем по тексту - БРП • Номинальное напряжение электропитания U_{BX} AC, B,	;;); ı;			
Характеристики АКБ (в комплект поставки не входит) • Номинальное напряжение электропитания U _{ном} DC, B, 12 • Ёмкость АКБ, А×ч, в соответствии с проектом • Размещение АКБ внешнее	ί;			
Режим заряда АКБ: БРП обеспечивает автоматический заряд аккумуляторной батареи до полной ёмкости, после чего производит её подзарядку для компенсации саморазряда аккумуляторной батареи. Заряд аккумуляторной батареи производится сначала в режиме заряда постоянным током, с последующим переходом на режим заряда постоянным напряжением (буферный режим). ◆ Напряжение заряда АКБ в буферном режиме (от БРП), В,				
 Внимание! При разряде аккумуляторной батареи до напряжения ниже 6В, БРП не производит заряд аккумуляторной батареи. Характеристики извещений Шкаф формирует следующие выходные сигналы о своём состоянии: • "Общий сигнал неисправности Uпит (NC)". Формируется в виде размыкания контактов реле (XT3:1 – XT3:2) при неисправности хотя бы одного из двух источников электропитания АС, при отключении любого автоматического выключателя, при снижении Uвых DC до 13.4В и при снижении Uакб до 10.5В (проверяется не реже одного раза за 60мин, и при нажатии кнопки "Сброс", расположенной на плате БРП); • "Включен ввод №1 (NO)". Формируется в виде замыкания контактов реле (XT3:3 – XT3:4) при присоедимения электроприеминков потребителей к источнику питания №1; 				

- XT3:4) при присоединении электроприемников потребителей к источнику питания №1;
- "Включен ввод №2 (NO)". Формируется в виде замыкания контактов реле (XT3:5 ХТЗ:6) при присоединении электроприемников потребителей к источнику питания №2;

Коммутационная способность контактов, формирующих сигналы состояния:

- максимальное коммутируемое напряжение (AC15/DC1), не менее, В 250/30;

Общие характеристики шкафа:

- ◆ Конструкция шкафа по группе механического исполнения M4 по ГОСТ 175161-90:
 - ускорение 3g;
 - длительность удара 2мс.
- ♦ Степень защиты оболочки от воздействия окружающей среды по ГОСТ 14254-80:
 - исполнение CBT64.820.000-12(..-35) IP54;
 - исполнение CBT64.830.000-12(..-35) IP31.

Версия 01.0705

 $^{^2}$ Рекомендуется использовать для установки АКБ блок аккумуляторный БА CBT1189.00.000

НПФ "СВИТ" *CBT64.820(830).000-01(..-03) ПС* ПАСПОРТ

- По климатическому исполнению и категории размещения устройство соответствует группе УХЛЗ по ГОСТ 15150-69:
 - предельная температура окружающей среды от минус 10^{0} С до $+40^{0}$ С;
 - предельная относительная влажность окружающей среды 98% (при температуре $+25^{\circ}$ C).
- Транспортирование и хранение устройства должно соответствовать группе 3 по ГОСТ15150-69:
 - предельная температура хранения от минус 50° С до $+50^{\circ}$ С;
 - предельная относительная влажность окружающей среды 98% (при температуре +35 $^{\circ}$ C).
- По воздействию механических факторов при транспортировании устройство относится к группе С по ГОСТ 23216-87.
- ♦ Средняя наработка на отказ с учетом технического обслуживания, час, не менее30 000.
- ◆ Габаритные размеры, мм,
 800x600x300³.

3. Варианты исполнения шкафа

Таблица 1

Тип шкафа	Обозначе	uu a uu ka dha		Номинальный ток источника DC=12B I _{ном} DC ,A	Максим. сечение проводов силовых кабелей (AC), мм ²	Максим. сечение проводов кабелей DC, мм ²
1	2	3	4	5	6	7
ШК1 800-33-БРП12	CBT64.820.000-12	CBT64.830.000-12	20.0	2.0	6,0	
ШК1 800-33-БРП12	CBT64.820.000-13	CBT64.830.000-13	20.0	4.0	6,0	
ШК1 800-33-БРП12	CBT64.820.000-14	CBT64.830.000-14	20.0	6.0	6,0	
ШК1 800-33-БРП12	CBT64.820.000-15	CBT64.830.000-15	20.0	9.0	6,0	
ШК1 800-36-БРП12	CBT64.820.000-22	CBT64.830.000-22	40.0	2.0	16,0	
ШК1 800-36-БРП12	CBT64.820.000-23	CBT64.830.000-23	40.0	4.0	16,0	2,5
ШК1 800-36-БРП12	CBT64.820.000-24	CBT64.830.000- 24	40.0	6.0	16,0	2,3
ШК1 800-36-БРП12	CBT64.820.000-25	CBT64.830.000-25	40.0	9.0	16,0	
ШК1 800-38-БРП12	CBT64.820.000-32	CBT64.830.000- 32	70.0	2.0	35,0	
ШК1 800-38-БРП12	CBT64.820.000-33	CBT64.830.000-33	70.0	4.0	35,0	
ШК1 800-38-БРП12	CBT64.820.000-34	CBT64.830.000- 34	70.0	6.0	35,0	
ШК1 800-38-БРП12	CBT64.820.000-35	CBT64.830.000- 35	70.0	9.0	35,0	

Примечание: Номинальный ток потребителей на выходе DC=12B шкафа определяется как: $I_{\text{вых}}DC = I_{\text{ном}}DC - I_{\text{зар}}$, где: $I_{\text{ном}}DC$ - Номинальный ток источника DC=12B (см. таблицу); I_{3ap} – установленный ток заряда АКБ.

Например: Применяется ШК1 800-36-БРП12 СВТ64.830.000-24. $I_{\text{ном}}DC = 6.0A$ (из таблицы 1). По проекту устанавливается АКБ с номинальной ёмкостью $C_{ak6} = 18 \text{ A} \times \text{ч}$, и по таблице 3 выбран ток заряда $I_{\text{зар}} = 0.6A$.

Номинальный ток потребителей на выходе DC равен: $I_{\text{вых}}DC = I_{\text{ном}}DC - I_{\text{зар}} = 6.0 - 0.6 = 5.4 A$

Для обеспечения селективности срабатывания автоматов защиты⁴, рекомендуется выбирать шкаф с номинальным током на выходе АС (ІвыхАС), превышающим максимальный суммарный ток потребителей.

³ Допускается изготовление с габаритными размерами 750x550x250.
⁴ Автомат защиты в шкафу управления оборудованием должен отрабатывать раньше, чем автомат защиты в шкафу управления питанием.

4. Комплектность

Таблица 2

Наименование	Количество, шт.	Примечание
Шкаф "ШК1 800БРП12" СВТ64.80.000	1	
Вставка плавкая ВП 1-1-*А/250В	2	К-т БРП
Паспорт шкафа "ШК1 800-ХХ-БРП12" СВТ64.820(830).000 ПС	1	
Паспорт блока "БРП12/24" СВТ74.50(60).000-01(04) ПС	1	
Паспорт реле контроля напряжения	2	

Пример условного обозначения при заказе:

- "1. Шкаф АВР "ШК1 800-37-БРП12" СВТ64.830.000-13 (ІномАС=20А, ІномОС=4А, ІР31)
- 2. Блок аккумуляторный ⁵ CBT 1189.00.000
- 3. Батарея аккумуляторная ⁶ 12B 17A·ч".

5. Устройство шкафа

Шкаф состоит из металлического корпуса настенного исполнения и передней панели (двери) с элементами управления.

На передней панели расположены:

- Световой индикатор "Ввод №1" исправность источника (ввода)№1;
- Световой индикатор "Ввод №2" исправность источника (ввода)№2;
- Световой индикатор "Ввод №1 включен" подключение потребителей АС к вводу №1;
- Световой индикатор "Ввод №2 включен" подключение потребителей АС к вводу №2;
- Световой индикатор "БРП" наличие напряжения $U_{\text{вых}}DC$;
- Световой индикатор "Авария" включается при неисправности питания БРП (при отказе обоих вводов или отключении SF1), при снижении $U_{\text{вых}}DC$ до 13.4B, или при снижении $U_{\text{акб}}$ до 10.5В:

На монтажной панели шкафа расположены коммутационные аппараты, блок БРП и зажимы для внешних подключений. Кабели вводятся в корпус снизу.

Блок БРП представляет собой электронное автоматизированное устройство обеспечения бесперебойным питанием приборов и устройств потребителя напряжением постоянного тока и функционально состоит из блока питания и блока контроля напряжений.

Блок питания предназначен для подключения основного источника питания U_{вх} AC, фильтрации помех, а так же для формирования напряжения для блока контроля напряжений.

Блок контроля напряжений предназначен для подключения резервного источника питания (АКБ), обеспечения бесперебойного питания прибора и подключаемых внешних устройств, контроля состояния аккумуляторной батареи, а так же для её подзарядки.

На лицевой панели БРП расположены:

- Световой индикатор "Сеть" о подаче напряжения $U_{\text{вх}}$ АС на вход блока;
- Световой индикатор "АКБ" о питании потребителей DC от АКБ;
- Световой индикатор "H.OП" о неисправности основного источника питания U_{вх} АС;
- Световой индикатор "Н.АКБ" о неисправности резервного источника питания;
- Световой индикатор "Н.БРП" о неисправности электропитания потребителей DC $(U_{\text{вых}}DC);$

На плате БРП, рядом с разъёмом Х4:БКН, расположена кнопка "Сброс", предназначенная для неоперативной проверки исправности аккумуляторной батареи.

⁵ Блок аккумуляторный поставляется совместно с изделием только по требованию заказчика

⁶ Аккумуляторные батареи поставляются только по требованию заказчика.

6. Алгоритм управления электропитанием

Алгоритм управления электропитанием потребителей AC построен на принципе равного приоритета источников электропитания. Источник питания (ввод), включённый первым, сразу присоединяется к электроприемникам и считается рабочим источником. Источник питания, включённый вторым, становиться резервным источником.

При неисправности рабочего источника (при отклонении характеристик электропитания за пределы допустимых значений) происходит отсоединение электроприемников АС от рабочего источника питания, и присоединение их к резервному источнику. При этом резервный источник становится рабочим, а рабочий источник — резервным. При восстановлении неисправного источника, он остаётся резервным. Переключения электроприёмников не происходит.

Алгоритм управления электропитанием потребителей DC построен на принципе приоритета основного источника электропитания. В качестве основного источника используется выход $U_{\text{ном}}$ AC питания электроприемников I категории.

При неисправности основного источника (т.е. при отказе обоих вводов электропитания AC), происходит автоматическое переключение потребителей DC на резервный источник питания (АКБ). При восстановлении основного источника, происходит автоматическое переключение потребителей DC на питание от основного источника питания.

7. Указание мер безопасности

Перед началом работы со шкафом необходимо ознакомиться с настоящим паспортом.

Эксплуатация, монтаж и ремонт шкафа, должны производиться в соответствии с "Правилами техники безопасности при эксплуатации электроустановок потребителей напряжения до 1000В" и "Правилами технической эксплуатации электроустановок потребителей".

Шкаф подлежит обязательному защитному заземлению (РЕ).

Все работы должны выполняться при отключенных источниках электропитания.

Ремонтные работы производить на предприятии-изготовителе или в специализированных организациях.

8. Рекомендации по монтажу

Шкаф установить на вертикальной стене (панели).

Установку произвести согласно разметки (см. Приложение 1).

Установить блок аккумуляторный (без АКБ).

Завести в шкаф кабели электропитания и контрольные кабели.

Вводные силовые кабели подключить к клеммам блоков зажимов 1XT1 и 2XT1 в соответствии со схемой электрической принципиальной, при этом первыми подключать проводники контура защитного заземления.

Кабели потребителей AC подключить к клеммам блока зажимов XT2 и клеммам защитного заземления.

Блок аккумуляторный подключить к клеммам XT3:9 и XT3:10, соблюдая полярность. Проверить отсутствие замыкания клемм для подключения АКБ между собой и на корпус блока.

Кабель потребителей DC подключить к клеммам XT3:7 и XT3:8, соблюдая полярность.

При наличии потребителей DC, допускающих краткосрочно повышенное токопотребление с превышением $I_{\text{потр}}DC$ над $I_{\text{вых}}DC$ (например модули тушения), подключить их отдельным кабелем непосредственно к клеммам блока аккумуляторного, соблюдая полярность.

9. Рекомендации по проведению пуско-наладочных работ

Отключить автоматические выключатели 1QF1, 2QF1 и SF1.

На реле контроля фаз 1FV1 и 2FV1 выставить уставку допустимого отклонения величины напряжения от номинального. Величину уставки выбрать в соответствии с техническими характеристиками электроприемников потребителей.

Внимание! Уставку реле контроля напряжения 1FV1 и 2FV1 выставлять только после отключения соответствующего ввода (автоматическими выключателями 1QF1 и 2QF1 соответственно).

Подать на шкаф электропитание от источников №1 и №2.

Включить автоматический выключатель 1QF1. При этом, в течении не более чем за 10 секунд, должны включиться:

Световой индикатор 1HL1 "Ввод №1";

Контактор 1КМ1;

Световой индикатор 1HL2 "Ввод №1 включен";

При этом происходит подсоединение источника питания №1 к электроприёмникам и формируется сигнал состояния "Включен ввод №1"

Если этого не произошло, а световой индикатор 1HL1 "Ввод №1" не включен, проверить характеристики электропитания от источника №1, порядок чередования фаз, и устранить причину неисправности.

Включить автоматический выключатель 2QF1. При этом, в течении не более чем за 10 секунд, должен включиться световой индикатор 2HL1 "Ввод №2".

Если этого не произошло, проверить характеристики электропитания от источника №2, порядок чередования фаз и устранить причину неисправности.

После проверки исправности источников питания, проверить отсутствие сигнала "Общий сигнал неисправности $U_{\text{пит}}$ ".

Для имитации неисправности источника питания №1, отключить автоматический выключатель 1QF1.

При этом должно произойти:

Выключение светового индикатора 1HL1 "Ввод №1";

Выключение контактора 1КМ1 (с отсоединением электроприемников от источника питания N_2 1);

Выключение светового индикатора 1HL2 "Ввод №1 включен";

Включение контактора 2КМ1 (с присоединением электроприемников к источнику питания N_2);

Включение светового индикатора 2HL2 "Ввод №2 включен";

Формирование сигнала "Общий сигнал неисправности $U_{\text{пит}}$ ";

Сброс сигнала "Включен ввод №1";

Формирование сигнала "Включен ввод №2";

Источник питания №2 стал рабочим, а источник питания №1 – резервным.

Включить автоматический выключатель 1QF1 (источник питания №1 восстановлен). При этом, в течении не более чем за 10 секунд, должно произойти:

Включение светового индикатора 1НL1 "Ввод №1";

Сброс сигнала "Общий сигнал неисправности $U_{\text{пит}}$ ";

Рабочим остается источник питания №2.

Аналогичным образом проверить переключение потребителей на электропитание от источника питания №1 при возникновении неисправности источника питания №2.

Отключить автоматические выключатели 1QF1 и 2QF1.

Открыть лицевую панель БРП. Проверить наличие предохранителей и соответствие их номиналу.

Установить величину зарядного тока АКБ:

Выбор и установка тока заряда аккумуляторных батарей (Ізар)

Значение тока заряда аккумуляторных батарей выбирается в зависимости от ёмкости используемых аккумуляторных батарей. Если значение зарядного тока в буферном режиме не указано изготовителем АКБ и в проектной документации, то его рекомендуется выбирать из таблицы 3 ниже:

Для установки значения тока заряда необходимо открыть крышку БРП, и на разъёме X1:БКН соединить между собой перемычкой два контакта, согласно таблице 3:

Установка тока заряда для аккумуляторных батарей

Таблица 3

Значение тока заряда		Соединяемые контакты		
Ёмкость Рекомендуемый аккумуляторной ток заряда,		Тип блока резервного питания		
батареи, С _{акб} , А×ч	I _{3ap} , A	БРП12-2А или БРП12-4А	БРП12-6А или БРП12-10А	
<0,7	<0,15	АКБ не подходит	АКБ не подходит	
0,7-1,0	0,15	X1:БКН ①②③④ ⑤	АКБ не подходит	
1,1-9,0	0,22	X1:БКН Ф@@ @	Х1:БКН ①②③④⑤⑥	
10-14	0,3	Х1:БКН 🛈 2 3 4 5 6	Х1:БКН ①②③④⑤⑥	
15-23	0,6	Х1:БКН 🛈 🙋 🕄 🐠 🕲 🌀	Х1:БКН ①②③④⑤⑥	
24-37	1,3	Х1:БКН Ф@3496	Х1:БКН ①②③�⑤⑥	
38-64	2,0	X1:5KH 0 @345 6	Х1:БКН ①②③④⑤⑥	
65-87	2,5	Х1:БКН Ф@3456	Х1:БКН ①②③④⑤⑥	
>87	3,0	X1:БКН Ф @345 6	Х1:БКН Ф@3456	

Примечание: Для ускорения заряда разряженной аккумуляторной батареи можно временно увеличить зарядный ток, путём перестановки перемычки на разъёме X1:БКН.

Внимание! Во избежание выхода из строя аккумуляторной батареи установленный зарядный ток $I_{\text{зар}}$ (A) не должен превышать величины $0.3 \times C_{\text{акб}}$, где $C_{\text{акб}}$ – номинальная емкость аккумуляторной батареи, $A \times \mathbf{q}$.

Включить автоматические выключатели 1QF1, 2QF1 и SF1.

Включить клавишу сетевого питания на панели БРП.

При этом на лицевой панели БРП должны включиться:

- Световой индикатор "Сеть" о подаче напряжения U_{BX} АС на вход БРП;
- Световой индикатор "Неисправность резервного питания" (Н.АКБ) о неисправности АКБ;

Замерить выходное напряжение БРП на клеммах XT3:7 – XT3:8.

Соблюдая полярность, подключить аккумуляторную батарею резервного питания к клеммам блока аккумуляторного.

Нажать кнопку "**Сброс**" на панели БРП. При этом световой индикатор "H.АКБ" должен погаснуть.

Замерить выходное напряжение БРП на клеммах ХТ3:7 – ХТ3:8.

Выключить клавишу сетевого питания на панели БРП, при этом на БРП должен выключиться световой индикатор "Сеть" и включиться световые индикаторы "АКБ" и "Н.ОП".

Замерить выходное напряжение БРП на клеммах ХТ3:7 – ХТ3:8.

Повторно включить клавишу сетевого питания на панели БРП, и при соответствии измеренных напряжений техническим характеристикам, шкаф считается готовым к работе.

Закрыть лицевую панель БРП.

10. Техническое обслуживание

Шкаф относится к изделиям с периодическим обслуживанием. Типовой регламент технического обслуживания шкафа разрабатывается с целью установления перечня работ по техническому обслуживанию, необходимых для поддержания работоспособности шкафа в течение всего срока эксплуатации и распределения этих работ между заказчиком и обслуживающей организацией. Примерный перечень регламентированных работ приведён в таблице ниже.

Данные о техническом обслуживании необходимо вносить в журнал технического обслуживания. Мероприятия по техническому обслуживанию систем противопожарной защиты должны производить специализированные организации, имеющие установленные в России лицензии на производство данного вида работ.

Таблица 4 Примерный перечень мероприятий по техническому обслуживанию

Перечень работ	Заказчик	Обслуживающая организация
Внешний осмотр шкафа на наличие механических повреждений	Ежедневно	Ежеквартально*
Контроль световой сигнализации на шкафу	Ежедневно	Ежеквартально*
Проверка работоспособности шкафа совместно с проверкой управляемого им оборудования.		Ежеквартально*
Проверка сопротивления изоляции соединительных линий.		Ежеквартально*
Проверка затяжки резьбовых соединений кабелей.		Ежеквартально*
Профилактические работы.		Ежеквартально*
Измерение сопротивления защитного заземления.		Ежегодно*

Примечание: * - при постоянном пребывании людей ежемесячно.

11.Гарантии изготовителя

Изготовитель гарантирует безотказную работу в течение 12 месяцев со дня сдачи изделия в эксплуатацию, но не более 24 месяцев со дня выпуска при правильной эксплуатации и при соблюдении потребителем условий, оговоренных настоящим паспортом, а также целостности пломб.

В течении гарантийного срока изготовитель бесплатно устраняет дефекты, связанные с изготовлением устройства в кратчайшие технически возможные сроки. Изготовитель не дает гарантий в случаях вандализма и форс-мажорных обстоятельств.

Изготовитель заключает договора на монтаж и техническое обслуживание. В этом случае гарантийный срок увеличивается до 5-ти лет.

Изготовитель оставляет за собой право на внесение изменений в конструкцию, не ухудшающих технические характеристики.

Адрес предприятия-изготовителя: 188307, Ленинградская обл., г. Гатчина, Красноармейский пр., дом 48, НПФ "СВИТ" факс. (81371) 2-16-16, тел. (81371) 2-02-04, (812) 715-02-39, e-mail: info@npf-svit.com, www: http://www.npf-svit.com.

12.Сведения о рекламациях

При отказе в работе в период гарантийного срока эксплуатации потребителю необходимо заполнить форму сбора информации, составить технически обоснованный акт с указанием наименования и обозначения изделия, его номера, присвоенного изготовителем, даты выпуска и отправить с формой сбора информации по адресу:

188307 Ленинградская обл., г. Гатчина, Красноармейский пр., дом 48, НПФ "СВИТ".

При отсутствии заполненной формы сбора информации рекламации рассматриваться не будут.

Все предъявленные рекламации (образец таблица ниже) регистрируются предприятиемизготовителем в журнале, содержащем дату выхода изделия из строя, краткое содержание рекламации, принятые меры.

Форма сбора информации

Таблица 5

заводской №, дата ввода в эксплуатацию ""20г.				
Дата выхода из строя	Краткое содержание рекламации	Принятые меры	Примечания	

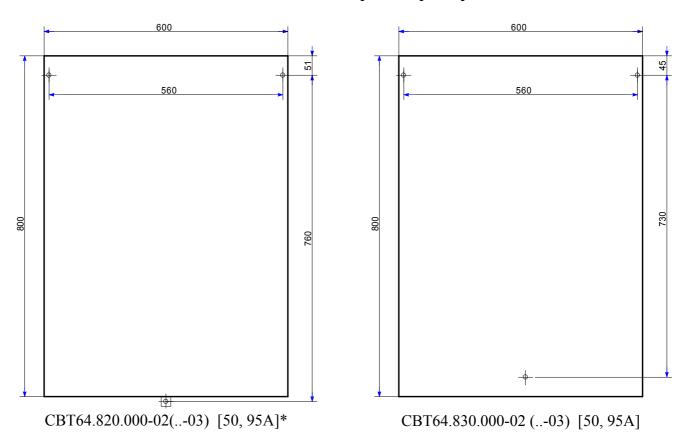
13. Сведения об упаковке и транспортировке

Упаковка шкафа производится путем помещения в картонную тару. Срок хранения изделий в упаковке должен быть не более 3 лет со дня изготовления.

В помещении для хранения не должно быть токопроводящей пыли, паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

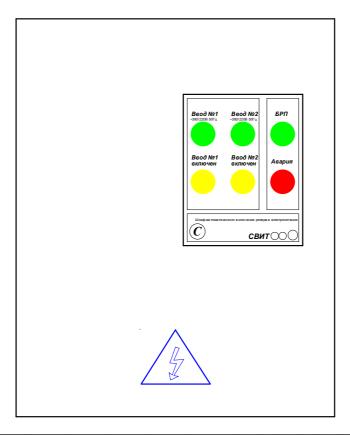
Шкаф в упаковке предприятия-изготовителя следует транспортировать в крытых транспортных средствах железнодорожных вагонах, закрытых автомашинах, (в герметизированных отапливаемых отсеках самолетов, трюмах и т.д.) на любые расстояния. При этом шкаф может подвергаться механическому воздействию тряски с ускорением не более 30 M/c^2 при частоте до 120 ударов в минуту.

Транспортирование и хранение шкафа должно производиться при следующих значениях климатических факторов:


- температура от минус 50 до плюс 50° C;
- относительной влажности до 98% при температуре + 35°C и ниже.

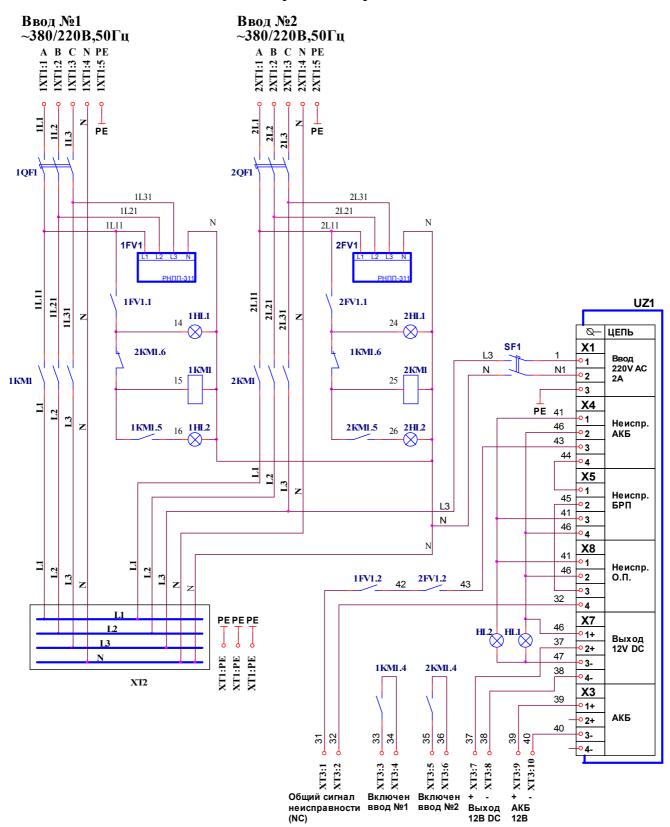
14. Свидетельство о приемке

Шкаф автоматического включения резерь "ШК1 800БРП12" СВТ64.80.000	
заводской номер	
соответствует конструкторской документ	ации и признан годным к эксплуатации.
	Дата выпуска ""200_ _г .
М. П.	
_	
_	(подпись и фамилия лица, ответственного за приёмку)
15.Свидетельство о	вводе изделия в эксплуатацию
Шкаф автоматического включения резерв "ШК1 800БРП12" СВТ64.80.000	
заводской номер	
введен в эксплуатацию """	20 Γ.
М. П.	
_	
-	(подпись и фамилия лица, ответственного за эксплуатацию)


Приложение 1

Установочные и габаритные размеры

^{*}Примечание: Нижнюю крепежную скобу при монтаже перевернуть ушком вниз.


Внешний вид

ПАСПОРТ

Приложение 2

Схема электрическая принципиальная

